

LA-UR-21-25232

Approved for public release; distribution is unlimited.

Title: Detecting neutrons, from ultra-hot to ultra-cold energies

Author(s): Wang, Zhehui

Intended for: Web

Issued: 2021-06-02

Detecting Neutrons

From ultra-hot to ultra-cold energies

Zhehui (Jeph) Wang

P-4, Los Alamos National Laboratory (May 27, 2021)

Outline

Motivations & Background

- Applied science: Threat Reduction/HS, Material discovery, Fusion energy, ...
- <u>Discovery science</u>: Nuclear Physics, Physics beyond standard model, QIS, ...

Detector development

- Multilayer B10 thin film detectors
- UCN detectors
- SIFaN (fast neutron tracking)
- Summary

Neutron detection in Applied Science

Fission neutrons

Thermal neutrons (0.18 nm)

UNCLASSIFIED

May 2021

Neutron detection & dark matter mystery

 $E_x > 2.9 \times 10^{-21} \text{ eV}$

E. O. Nadler et al, https://arxiv.org/abs/2008.00022

May 2021

Neutron quantum states as a ultrahigh sensitive probe

 $\sim 10^{-12} \text{ eV}$

absorber-mirror distance 1 / um

Abele et al (2010)

Nesvizhevsky et al. PRD 67 (2003) 102002

UNCLASSIFIED

 $\sim 10^{-15} \text{ eV} \text{ (Th: } 10^{-21} \text{ eV)}$

May 2021

Our approach driven by ³He shortage problem

D. A. Shea & D. Morgan, CRS Reort (2010)

$$\sigma$$
 (10B) ~ 72% σ (3He)

UNCLASSIFIED

April 2021

The ¹⁰B powder neutron detectors

UNCLASSIFIED

Performance (B): stability & γ-sensitivity

~ 18 months apart

~ 10% efficiency loss

UNCLASSIFIED

AWE/UK validation of efficiency & γ-insensitivity

Detector	$\varepsilon_{int n}$ (%)	GARRn @ 20 mR/hr
LANL ¹⁰ B	4.94 ± 0.23	1.00 ± 0.01
³ He: 10 bar	11.09 ± 0.42	1.01 ± 0.05
³ He: 2 bar (equiv.)	5.98 ± 0.23	1.01 ± 0.05

C. Allwork, S. Pitts, et al (AWE/UK)

UNCLASSIFIED

Optical/wave-like neutron known since Fermi

On Dec. 2, 1942, Fermi & his team achieved sustained chain reaction, and the first fission reactor. Key elements: fuel, neutron moderator, control rod, neutron detector, and radioactivity detector.

Chicago Pile-1 (CP-1)

UNCLASSIFIED

Ultracold → **Total reflection from surfaces**

Material:	V _F [8]	v _C [9]	η (10 ⁻⁴) ^[9]
Beryllium	252 neV	6.89 m/s	2.0-8.5
BeO	261 neV	6.99 m/s	
Nickel	252 neV	6.84 m/s	5.1
Diamond	304 neV	7.65 m/s	
Graphite	180 neV	5.47 m/s	
Iron	210 neV	6.10 m/s	1.7-28
Copper	168 neV	5.66 m/s	2.1-16
Aluminium	54 neV	3.24 m/s	2.9-10

⁵⁸Ni = 335 neV

Gravity: 1 m ~ 102 neV

Magnetic field: 1 T ~ 60 neV

UNCLASSIFIED

Z. Wang Slide 11

Fermi potential

UCN Microscopy: using scintillators

W. Wei et al, NIMA 830 (2016) 36-43.

UNCLASSIFIED

UCN imaging: direct detection

b K. Kuk et al., UCN projection imaging (2021)

UNCLASSIFIED

a

Compact UCN camera

5"

(without scintillator or other neutron converters)

UNCLASSIFIED

Advances in higher resolution: $\sim 1 \mu m$

2020

2018

Pattie et al, *Science* **360** (2018)

2015 • 2016

UNCLASSIFIED

BoD DEC 2014

Femto-sec SAXS/WAXS at LCLS

- ~ 100 fs
- $\lambda \sim 0.15 \text{ nm}$
- 1-30 x 10¹² ph/pulse
- 120 Hz

Kunnus et al. (2020)

Coakley *et al.* (2020)

UNCLASSIFIED

April 2021

TR-SANS, TI-SANE, etc.

Thermal or cold $\lambda_t \sim 0.18$ nm

TISANE

- Gahler & Golub (1999)
- μs [Wiedenmann:2006, Kipping:2008]
- Sub-ms scale [Glinka: 2020]
- Hours to ms [Isnard:2007]
- TR-SANS [Nakano:2009]
- Sub-minute scale [lbrahim: 2017]

SIFaN: Motivation [High-energy neutron radiography]

White neutron spectrum

- 0.6 400 MeV (4FP-60R)
- Every neutron counts
- 2 x 10⁶ n/cm²/s
- ~ 30 cm x 20 cm
- Small. Cross sections

1.0

Neutron energy (MeV)

10.0

BoD DEC 2014

SIFaN: Fast neutron telescope

SIFaN: ~ medium resolution

Weinfurther et al., 2018

UNCLASSIFIED BoD DEC 2014

SIFaN: High resolution (TPC design & materials)

https://argoncube.org/LArTPCs.html

UNCLASSIFIED

BoD DEC 2014

Z. Wang Slide 21

- Thermal neutron detection based on ¹⁰B
 - Architectural innovations
- **UCN:** One of the world's smallest neutron cameras demonstrated
 - UCN QIS
- SIFaN: HE/Fast Neutron radiography
 - Fast neutron tracking & imaging

Acknowledgement

- Chris Morris, Chris Allwork (AWE/UK), Jeff Bacon (Retired), Mike Brockwell (Formerly LANL), Fred Gray (Regis University), Chuck Hurlbut (Eljen Technology), Simon Pitts (AWE/UK), John Ramsey (ORNL)
- UCNτ collaboration

(All LANL except specified explicitly)

UCNτ Collaboration

Argonne National Laboratory

N. B. Callahan

California Institute of Technology

M. Blatnik, B. Filippone, E. M. Fries, K. P. Hickerson, V. Su, X. Sun, C. Swank, W. Wei

DePauw University

A. Komives

East Tennessee State University

R. W. Pattie, Jr.

Indiana University/CEEM

M. Dawid, W. Fox, C.-Y. Liu, F. Gonzalez, D. J. Salvat, J. Vanderwerp

Institut Laue-Langevin

P. Geltenbort

Joint Institute for Nuclear Research

E. I. Sharapov

Los Alamos National Laboratory

S. M. Clayton (co-spokesperson), S. A. Curry, M. A. Hoffbauer, T. M. Ito, M. Makela C. L. Morris, C. O'Shaughnessy, Z. Tang, W. Uhrich, P. L. Walstrom, Z. Wang

North Carolina State University

T. Bailey, J. H. Choi, C. Cude-Woods, E. B. Dees, L. Hayen, R. Musedinovic,, A. R. Young, B. A. Zeck

Oak Ridge National Laboratory

L. J. Broussard, J. Ramsey, A. Saunders

Tennessee Technological University

R. Colon, D. Dinger, J. Ginder, A. T. Holley (co-spokesperson), M. Kemp, C. Swindell

